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Understanding Kernels

A Fundamental Concept in Machine
Learning and Signal Processing



What 1s a Kernel?

A kernel can be thought of as function that
measures similarity between two data points.

Pairwise measure of distance.



What are Kernel used for?

Kernels are used extensively in machine learning
to compute nonlinear problems.

They reduce the problem to a linear problem
(Kernel Trick)
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From linear to nonlinear transforms

Many of the traditional techniques for dimensionality reduction are linear.

Principal component analysis

R R B A ~—""Rows of A are projection vectors
- ' ' ' | | ~and form an orthonormal basis of the
~ original space.
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From linear transforms to nonlinear ones

What if the problem is nonlinear?
Can we find an embedding in which the data appears linear?

Nonlinear Principal component analysis — kernel PCA

--------------------------------------------------------------------------------------------------------

®  ¢(x): Nonlinear transformation

e | emges
= = = ' ; Projections onto two well-chosen

eigenvectors after kernel PCA.
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Use of kernels: example

Key idea:

Some problems are made simpler
If you change the representation of the data

Joetass o
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Which representation of the data allows to separate linearly
the two groups of datapoints?
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Result after kernel PCA

Data becomes linearly separable when projected onto two first principal

components of kernel PCA with RBF kernel (see next lecture)
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Use of kernels: example

Key idea:

Some problems are made simpler
If you change the representation of the data

oClass 0]
0.4 eClass 1|
oClass 2
0.2
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0.0
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Result after kernel PCA

3D view on 3 eigenvectors

Places each group in a quadran
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Result after kernel PCA
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In large dimension?

File Edit Plugins Help
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What if we have many groups and they live in N dimensions, with N>>17

Grouping may require many combination of projections
and can no longer be visualized
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Kernels: intuition

How to separate the red class from the grey class?

X, 0

360 _|

Polar coordinates

Data become linearly separable
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Kernels: formalism

Original Space Feature Space H

? H

While the dimension of the original
space is N, the dimension of the

X feature space may be greater than
N! = X s lifted onto H

Send the data X into a feature space H through the nonlinear map ¢.

Idea: In feature space, computation is simpler (it becomes a linear problem)
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Kernels: formalism

Original Space Feature Space H

X

Determining ¢ is difficult = Kernel Trick
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What is the kernel trick?

o Most algorithms in ML only require to compare relative distance across
datapoints.

—> They do not need explicit coordinates of the datapoints.

o The relative distance relies often on computing the inner product: <xi,xj > =xT.x!

—> No need to compute the transformation ¢, if one expresses everything
as a function of the inner product in feature space.

Define a kernel function: K: XxX >R

k(x‘,xj ) —><¢(x‘),¢(xj )>

Apply linear transformation (PCA, linear regression, K-means) by using the kernel
in place of the inner product.
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The kernel function

o k (x‘ , xj) defines a measure of similarity / distance across datapoints in feature
space.

¢ It can extract features that are either common or that distinguish groups of
datapoints.

¢ There exist several popular kernel functions in machine learning.

¢ To build an understanding of what feature they can extract, we will do a few
exercises next.
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Popular kernels

/

s Gaussian / RBF Kernel (translation-invariant):

|2
x=x]

k(X,X'):e 20" el

% Homogeneous Polynomial Kernels:

K(xx")={xx")", peN;

“* Inhomogeneous Polynomial Kernels:

k(x,x'):(<x,x'>+c)p, peN,c>0



MACHINE LEARNING I -

Popular kernels

/7

«» Linear Kernel: k(

X,X')=x X",

s Exponential/Laplacian Kernels:

x=x] x=x]

k(x,x")=e 2, k(x,x")=e 7, ceR
s Sigmoid kernel:
k(x,x'):tanh(axTx'+c), a,ceR:

See supplement posted on moodle for more examples of kernels.
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Kernels: properties

The kernel function is a real-valued function with two arguments:
K(X,x): XxX >R

It is symmetric:
k(% x")=k(x",x)

In some cases, it is non-negative:
k(x,x")=0.

When k is non-negative and symmetric, then there is a Hilbert space of
function on X for which k is a reproducing kernel. This is known as a Mercer kernel.
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Kernels: properties

Sending data into feature space can increase the dimension of data features.

Consider inhomogeneous polynomial kernel with p = 2.

If x e R?, we have k(x,x")= (1+ XX + XX, )2

'\ 2 '\ 2 ' ' ' '
:1+(x1x1) +(x2x2) + 2X X, + 2X, X, + 2% X X, X,

(xx) =4 ()" #(x)
600 =[1V20 V2 ¢ 20, | p(X) €
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Kernels: properties

RBF, exponential and Laplacian kernels

= [x=x1 _[x=x] =]

RBFk(x,x)=e 2, oeR Exp:k(x,x")=e 2o, Laplacian:k(x,x')=e ¢ ore ¢, ceR.

RBF
Exponential
Laplacian

0.9
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Kernels: properties

Are the RBF, exponential and Laplacian kernels metrics?

=t [x=x] [x=x]

k(x,x)=e ", ceR  k(x,x)=e 2, k(x,x')=e ° , ceR

Condition 1: k(x,x') =0 if and only if x = X"

Not satisfied, but if we write m(x,x)=1- k(x,X), we get a metric.

Condition 2 (symmetry): m(x",x* ) =m(x?,x)
Condition 3 (triangle inequality): m(x, x*)+m(x?,x*) = m(x,x%)



MACHINE LEARNING I -

Kernels: Exercise 1.1

|x=x]

Using the RBF kernel: k(x,x")=e 2 , o eRR, draw the isolines

of the kernel for one datapoint x'. Find all x, s.t. k(x,x") = cst.

51
50.8 |
50.6 |
50.4 -
50.2 |

50 - &
49.8 +
49.6 -
49.4 +

49.2

49 | | | 1 | | 1 | | |
49 492 494 496 498 50 50.2 504 506 508 @51
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Kernels: Solutions Exercise 1.1

RBF Kernel; M=1, i.e. 1 data point

Isolines for rbf kernel

® rbf1

47 o2 |
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Kernels: Exercise 1.2

12
x|

Using the RBF kernel: k (x, x")=e 20" 5 R, draw the isolines
of the kernel for two datapoints, x*, x*:

a) Find all x, s.t. k(x, x1)+ k(x, x2) = cst.
b) Find all X, s.t. k(x, xl)— k(x, x2) = cst.

c) Discuss the effect of o on the isolines. |

n

O_

30

10
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Kernels: Solutions Exercise 1.2

Gaussian Kernel; M=2, i.e. 2 data points

Isolines for rbf kernel | solines for rbf kernd

5 5¢ 0.6
i Dl :
0.4
3r 3
20 ? -0.2
1 1
P .
£ ?f\\\r
~ SNSRI °
1 -1
ol X 1-0.2
3 3
-0.4
4t 4
-5 ! ! : : ' : : : ' 5t - . -0.6
5 4 3 -2 -1 0 1 2 3 4 5 -3 2 1 0 1 2 3
X X
Solution when taking the Solution when taking the

sum of kernels difference of kernels
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Kernels: Solutions Exercise 1.2

Gaussian Kernel; M=2, i.e. 2 data points

Isolines for rbf kernel

Isolines for rbf kernel

® rbf1 ® rbf1
41 ® 2| | 47 ® 2] |
3 3+
2 2+
1 al
> 0 > 0
L 1
2 2
3 3l

T
Small kernel width Large kernel width

Solution when taking the sum of kernels
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Kernels: Exercise 1.3

Using the RBF kernel: k(x,x')=e 2" , o eR, draw the isolines

of the kernel for three datapoints
Compare RBF to Exponential & Laplacian kernels:

[x=x] [x=x]
2
k(x,x")=e 2, k(x,x')=e °, ceR. %
28
26
24
22 83
><(\I 20 + 9(1
18
16
%2
14 -
12
10 1 1 ]
10 15 20 25
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Kernels: Solutions Exercise 1.3

Gaussian Kernel; M=3, I.e. 3 data points

Isolines for rbf kernel

™
4r °®

rbf1

rbf2 | |

Solution when taking the

sum of kernels

-3

-4

| solines for_rbf kernel

e ;':’"T”\

e

)

NS
"‘w‘

-4 -3 -2 -1 0 1 2 3 4

X
Solution when taking the sum for

the two points below and the
difference with the 3rd point.
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Kernels: Solutions Exercise 1.3

Gaussian Kernel; M=3, I.e. 3 data points
Isolines for rbf kernel

Effect of increasing the kernel width
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Kernels: Solutions Exercise 1.3

Gaussian Kernel; M=3, I.e. 3 data points
5 Isolines for rbf kernel

rbf1
® bf2| |
™

T
s
@w
)]

N
(=]

N
o
(CS]
I

O

Effect of increasing the kernel width
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Kernels: Exercise 2.1

Using the homogeneous polynomial kernel:
K(x,x")={x,x")", peN,
draw the isolines as In previous exercise for:

a) one datapoint
b) two datapoints

Discuss the effect of p on the isolines.
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Kernels: Solutions Exercise 2.1

Given a datapoint x’, the polynomial kernel is given by:
(%) =¥ [x|cos (6)

This is the equation of a projection onto the vector X'.

The set of points X, solutions of the equation:

() =[x

cos(d) =cst.

IS an infinite set of lines perpendicular to the vector x’.
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Kernels: Solutions Exercise 2.1

Polynomial Kernel; order p=1, 2, 3; M=1, i.e. 1 data points

p=1 p=2 p=3

Isolines for Polynomial kernel

Isolines for Polynomial kernel

Isolines for Polynomial kernel
i T 7 — 35 T T T T T T T T T

— 200

® poly1
@D poly2 1150

® poly1

| ® poly1 ﬁ
poly2 |

130

4100

125
150

-100

-150

x
N
) IS A N =} - N ow IS o
. .
. | ' =
x
N
[$) AN - o = Now A o

T S O e
o

-200

The isolines are lines perpendicular to the vector point from the origin. The order
p does not change the geometry. It only changes the values of the isolines.
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Kernels: Solutions Exercise 2.1
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Kernels: Solutions Exercise 2.1

Given two vector datapoints x* and x*, we have:

. p P T T _ T 1 %
Forp =1, <X’ X1> +<X’ X2> _(X) X +(X) X _(X) (X T X ) Projections orthogonal
to composition of the two

. . 1 2 .
Given two vector datapoints x™ and x°, we have: vector points

Forp=2, <x, x1>2 +<x, x2>2 :((xl)T x)2 +((x2 )T x)2
If the datapoints are 2-dimensional, we have: @ = [y, 75]".

We expand and we get: g2 + M% t cria0, Equation of an ellipse

a = (:1.'%)2—0— (.1?%)2, h = (;1‘.%)2 + (:t?%)z e 411:%;11%1:%;1?

S

LI |
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Given two vector datapoints x' and x°, we have:

Forp =1, <x, x1>p —<x, x2>p :(x)T X' —(x)T X2 :(X)T (X1 — X2)
Projections orthogonal
to composition of the two

Forp=2, <x, x1>2 +<x, x2>2 :((Xl)T x)2 _((Xz )T X)z vector points

Given two vector datapoints x* and x*, we have:

If the datapoints are 2-dimensional, we have: = = |71, .rg]T.

.9 9
We expand and we get: ¢y — bas + criao

Equation of a hyperbola
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Kernels: Solution Exercise |l

Homogeneous Polynomial Kernel; order p=1, 2, 3; M=2, i.e. 2 data points

5Isohnes for Polynomial kernel 6 Tsolines for Polynomial kernel |solines for Polynomial kernd
I ‘ I I ‘ ‘ I I ‘ ] 5 7 7 T T T T T T T — 40 5f v A T
® poly1 F
pd 14 | 135 f \\
3 /// 1 3 | 3K ;t M
2 e 2 130 5 f T
I’ | i - 430
0 o >0 1 >0 e 420
20 =TT
1 1 A L 10
2 2 2 15 2
3 [
’ -4 , TR \\ ;
4 -4
5 : 6 s 4 5 2 4 0 1 2 3 4 5 ’ '5\\ E : {f; -20
5 4 3 -2 1 0 1 2 3 4 5 5 4 3 2 4 0 1 2 3 4 5
z X
x
p=1 p=2 (sum) p=2 (difference)

The isolines are lines perpendicular to the combination of the vector points for
p=1. With p=2 and the sum of kernels, we have an ellipse. For the difference,
we have a hyperbola. The ellipse and hyperbolas are centered at the origin.
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Kernels: Solution Exercise |l

Homogeneous Polynomial Kernel; order p=1, 2, 3; M=2, i.e. 2 data points

Isolines for Polynomial kernel

-

-5 L . L L L " " L
5 4 p=3um) 0 1 2 3 4 5

30

120

110

-30

Isolines for Polynomial kernel

>0
1+t
2+
37 \,
\\
4+ ™~
-5 — !
p=3(diff) -3

2 -1 0 1 2

30

120

110

-30

Wi T
With higher orders for p, the solutions are equivalent to a superposition of
polynomial kernels of different orders, i.e. superposition of ellipses and
hyperbolas. They remain symmetrical around the origin, but may lead to more

curvy shapes as illustrated above.
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Kernels: Solution Exercise |l

Homogeneous Polynomial Kernel; order p=1, 2, 3; M=2, i.e. 2 data points

Isolines for Polynomial kernel

Isolines for Polynomial kernel

5 ,,,,,, — 70 5 30
4 / \ | 4
/"i \\ ] 60 - 20
sl / \ ]
2r 2—
150 -10
1F !
[ ]
> 0 40 - ) |
1 -1r | \ 1
30 10
2F 2r \
3 5 i / \
}»\ /f 2 / | -20
-4 )‘ "\\\\\.\ T // / / ) x
-5 S~ T | . -30

p=a(difth) 4 5 2 4 0 1 2 3 4 5
Xz i

With higher orders for p, the solutions are equivalent to a superposition of

polynomial kernels of different orders, i.e. superposition of ellipses and

hyperbolas. They remain symmetrical around the origin, but may lead to more
curvy shapes as illustrated above.
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Kernels: Exercise 2.2

Does the effect changes if you use the inhomogeneous
polynomial kernel?

k(x,x'):(<x,x'>+c)p, p,ceN,

With 1 pOint: (<X,X'>+C)p :(XTXI)P +CP +§Ck (XTX'>P_k

~

Offset of value of isoline zero
homogeneous kemel  y4ard positive or negative quadran
depending on value of ¢ and p.

k=1

Same solution as for
homogeneous kernel
with a scaling by ¢

Same solution as for
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Kernels: Exercise 2.2

Does the effect changes if you use the inhomogeneous
polynomial kernel?

k(x,x'):(<x,x'>+c)p, p,ceN,

P-1
. . P P P—k P—k
With 2 points (xT xl) +(xTx2) He"+ > X ((xTxl) +(xT x2) )
k=1
Same solution as for \Same solution as for
homogeneous kernel homogeneous kernel
Offset of value of isoline zero with a scaling by ¢

toward positive or negative quadran
depending on value of ¢ and p.
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Kernels: Solution Exercise |l

Polynomial Kernel; order p= 2; c=1, M=3, i.e. 3 data points

Isolines for Polynomial kernel _Isolines for Polynomlal kernel

. a0 N 30
] R
3 Pt ™ 3 /' \\ w0
/ = {60 l 0
2 — 4 2 /
J P | 10
1 ( - 50 = 120
>0 >0 ~
) \ L 1 = --30
O\ [
-2 5\ 30 -2
-50
INRNEAN
\ \ \ -3 -60
\ 20
4 \\ \\ A 70
5 \ P Pt . 10 5 r ‘ r r r r / 4 30
5 4 3 2 1 0 1 2 3 4 5 5 4 3 =2 1 0 1 2 3 a4 s i
X X

The offset in the innomogeneous polynomial kernels allows to shift the center
of the ellipses and hyperbolas for p=2 and above. For p=1, it affects only the
value of the isolines.
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Kernels: Exercise 3

Kernels can also be created through addition of kernels
and through multiplications.

a) Draw the isolines (around x')that result from adding a
RBF and polynomial kernel, i.e.:
k(X1 X ') — kRBF (X’ X ') + kPon (X1 X l)

b) Draw the isolines that result from multiplying a RBF and

polynomial kernel, i.e.:
K(X, X") = Kgge (X, X) - kPon(X’ X')
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Kernels: Solutions Exercise 3

RBF kernel 6=0.2 (left) / 0.8 (right) and Polynomial Kernel, p=1, c=-1, M=2.

_Isolines for Polynomial kernel |solines for Polynomial kernel

8 5 14
4 4 12
6
3 3 10
2 = ] 4 2 i L -8
1 uall 1 e T - -6
- -2 B f‘ ‘\L A
X, AN
>0 {:\E‘i} >0 j:‘ i_,,:': ff 4
— A
1 B / 7 O 1 4!{‘ 2
T . 3
-2 2 e = 7(“." /f' f/ 0
3 j./‘f R R S 2
/f/ /
e
5 - R 6 % 4 3 2 1 o0 1 2 3 4 s ©
-5 -4 3 2 1 0 1 2 3 4 5
X X

K(X, X?) =10Kgge (X, X') + kPon (X, X)
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JIsolines for Polynomial kernel _Isolines for Polynomial kernel
N ‘ | N 4 S 0.8
3 3 , / \\
, ) / N \ \\ 0.7
" .
2 Original kernels RN ETZ =N\ o
>0 0 > E EE @ EE é F 105
-1 1 0 " Al 5
S 5 . \ % . - ;/l} ;[ = 104
\ s NN S os
A 4 \ // 0.2
3 — E
5 5
-5 -4 -3 -2 -1 0 1 2 3 4 5 2 0.1
X -5 -4 -3 -2 -1 0 1 2 3 4

X

| solines for Polynomial kernel

0.6
£
/L/
&
o £
77':: - N “'.v ,L/
£l ya 0.4

k(X’ XI) = kRBF (X’ X')'kpoly (X’ X') i %ﬁf F}} ol - o

Result of the multiplication:

r 0.2

,ff = 401
AR

N
ARG
e’

3 /
4 - al A% -0.1




MACHINE LEARNING I -

5 4 3 -2 -1 0 1 2 3 4 5 \\
«—-f"‘"‘("

X T ——

] Isolines for Polynomial Kernel N Isolines for RBF Kernel
) /«f“"( 5 16
4 | e
3 - // % 4 = - 1.4
2/ 3 //W.\“\ \\
. . r 150 e E 12
2 Original kernels 1 . ) / i NN
>0 //{/ L 40 15}{ / i,f — ‘\ \K FoAl
1 . : [ menly? ’
e wﬂ___ﬂ.-/“’ (‘// L s i E b N LA f } } L dos
-2 T 0
J((ﬂ/__,.«—-‘“"‘ﬂ \\ \ J/f'/: / /
3 20 -1 \\ S —_— < // A 0.6
41~ L«J ; , \\ R B / 04
-5 10 /

0.2
-4 -3 -2 -1 0 1 2 3 4

Isolines for Product of Kernels

Result of the multiplication: gf‘ > E I
' ! ' AN s P |
K(x,x) = kRBF (X,x)- kPoly (X, x) 1 \\W;;imww\ A
>0 ‘? m:fmt"\\ - 0.8
1 f[ // _/r\, R

2 f ff E\ \}/‘E X 1 = 40.6

RN YN
LAY Ay &
b asanrgyal §

5 -4 3 2 -1 0 1 2 3 4 5
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TN

-5 [ 1 | -6
-5 0 5

Composition of kernels can allow to create a variety of deformation of the space

Kernel — composition of 4 datapoints Keq- (X, X") - Kpory (X, X°) + Kege (X, X°)- Koty (X x*)
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— — 250 60
AN DN 1200 \
AN \ 140
N[ 150 \
1100
) 120
- 150 N
@ ° / (,/\\ B
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) 0 \ " 0
- . ( (7
[ ] \
/ -50 °
y -100 20
///
-150
/ -40
/ : -200
5 0 5 -250 i 60
-5 0 5

Composition of RBF and ellipses / hyperbolas from Polynomials
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Kernels: Exercise 2.3

Two other relatively popular kernels are
the linear kernel: k (x,x")=x"x".
X' X'

the cosine kernel: k(x,x') = IEEh

Draw the isolines when using cosine kernel

X' X'
K(X,X") ==
I

Which group of points cannot be separated by these kernels?
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Kernels: Solutions Exercise 2.3

T
The cosine kernel: k ( x, x' :—X|:cos <(x, X'
][

N

b DA

7 " .'l"".l'"n 0y ey,

/ Uttt

1 i
~ "l',"l

/
] 17
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TR
0.5 4 uu/',',,,,',',',:'n, %
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T
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il
i i
'7/(/1*’2\“\"1‘\‘""‘}!‘,‘!“\‘ ’ i
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Kernels: Solutions Exercise 2.3

This linear kernel is the special case of polynomial of order 1.
It cannot separate points that can be reached by a single line.
It can separate all other cases.

The cosine kernel cannot separate points that are colinear (vector
pointing from the origin to the point) and in the same quadran.
It can hence not separate groups of points homogeneously distributed

In the same quadrans.
This i1s due to the fact that the cosine kernel Is insensitive to the distance

to the origin unlike the linear kernel.
This can however be a strength as we will see with kernel K-means.

These concepts will be reused in kernel K-means lecture
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Example of application of the linear kernel

Bags of words:
[machine, learning, kernel, rbf, robot, vision, dimension, blue, speed,...]
You want to group webpages with common groups of words.

Set x € N** with each entry in x set to 1 if the word is present else zero.

Eg.x'=[11100 O....]T contains the words machine learning
and kernel and nothing else.

Features live in low-dimensional space (common group of webpages have
a low number of combination of words):

k(x‘,x"):ZxLTxkj =X % x0T xd T xd XX+
k

The isoline k (xl, X ) =3 delineate the set of webpages that share the same

set of three keywords as x'.
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wACHMNELEARNNG Sl
Example of application of the linear kernel

Sequence of strings (e.g genetic code):

[IPTSLODVBUV,.. ]
Want to group strings with common subgroups of strings.

Set ¢(x),x e N™ the number of times sub-string x appears

In the string word.

One can apply the linear kernel with same encoding as
In previous bags of words examples.

Using cosine kernel can allow to delineate webpages that
share the same keywords irrespective of their frequency.
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Kernels: Summary

= Kernels are real-valued, symmetric functions.
= Kernels represent the inner product across projection of data in feature space.

= The most popular is the RBF kernel. It enables to group datapoints. The
tightness of the grouping depends on the value of the hyperparameter .

= The polynomial and cosine kernels provide a geometric division of the space
that embeds symmetry across the origin or an offset.

= Kernels in ML are useful because they allow to reduce computation of complex
non-linear problem to simpler forms applied to linear problems.

= Determining the right kernel is difficult in practice. One usually determines the
best choice through crossvalidation to determine the kernel and the best
hyperparameters.

» There exist methods to learn the kernel (see course on Gaussian Process and
papers to read in class).
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