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Understanding Kernels

A Fundamental Concept in Machine 

Learning and Signal Processing
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What is a Kernel?

A kernel can be thought of as function that 

measures similarity between two data points.

Pairwise measure of distance.



MACHINE LEARNING – 2012

4

MACHINE LEARNING II

What are Kernel used for?

Kernels are used extensively in machine learning 

to compute nonlinear problems.

 

They reduce the problem to a linear problem 

(Kernel Trick)
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Many of the traditional techniques for dimensionality reduction are linear.

From linear to nonlinear transforms

Principal component analysis

1x

2x

'x Ax=

Rows of  are projection vectors

and form an orthonormal basis of the 

original space.

A
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What if the problem is nonlinear? 

Can we find an embedding in which the data appears linear?

From linear transforms to nonlinear ones

Nonlinear Principal component analysis – kernel PCA

( )

( )

' ,  

Nonlinear transformation:  

x x

x

A



=

1x

2x Projections onto two well-chosen

eigenvectors after kernel PCA.
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Key idea:

Some problems are made simpler 

if you change the representation of the data

Which representation of the data allows to separate linearly 

the two groups of datapoints?

Use of kernels: example
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Data becomes linearly separable when projected onto two first principal 

components of kernel PCA with RBF kernel (see next lecture)

Result after kernel PCA
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Key idea:

Some problems are made simpler 

if you change the representation of the data

Use of kernels: example
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3D view on 3 eigenvectors

Places each group in a quadran

Result after kernel PCA
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3D view on 3 eigenvectors

Result after kernel PCA

2D projections
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In most cases, determining beforehand the transformation  may be 

difficult.

What if we have many groups and they live in N dimensions, with N>>1?

Grouping may require many combination of projections 

and can no longer be visualized

Kernels: IntuitionIn large dimension?
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

r



360

Kernels: Intuition

2x

1x

How to separate the red class from the grey class?

Polar coordinates

Data become linearly separable

Kernels: intuition
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Original Space

Send the data X into a feature space H through the nonlinear map  

  ( ) ( ) ( )( )
1...

1 ,.....,
i M

i N MX x X x x  
=

=  =



Feature Space H

Kernels: Intuition

2x

1x

ix

Idea: In feature space, computation is simpler (it becomes a linear problem)

Kernels: formalism

H

While the dimension of the original 

space is N, the dimension of the 

feature space may be greater than 

N!  ➔ X is lifted onto H
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Original Space



Feature Space H

Kernels: Intuition

2x

1x

ix

Kernels: formalism

H

Determining  is difficult → Kernel Trick
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Kernel-Induced Feature Space

o Most algorithms in ML only require to compare relative distance across 

datapoints.

 → They do not need explicit coordinates of the datapoints.

o The relative distance relies often on computing the inner product:

 → No need to compute the transformation , if one expresses everything 

     as a function of the inner product in feature space.

What is the kernel trick?

, ji i T jx x x x= 

Define a kernel function:

 ( ) ( ) ( )

:

, , .i j i j

k X X

k x x x x 

 →

→

Apply linear transformation (PCA, linear regression, K-means) by using the kernel 

in place of the inner product. 
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Kernel-Induced Feature SpaceThe kernel function

❖                 defines a measure of similarity / distance across datapoints in feature 

space.

❖ It can extract features that are either common or that distinguish groups of 

datapoints.

❖ There exist several popular kernel functions in machine learning.

❖ To build an understanding of what feature they can extract, we will do a few 

exercises next.

( ),i jk x x
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Popular Kernels

( ), ' , ' ,    ;
p

k x x x x p= 

❖  Homogeneous Polynomial Kernels: 

❖  Gaussian / RBF Kernel (translation-invariant): 

❖  Inhomogeneous Polynomial Kernels: 

( ) ( ), ' , ' ,   ,  0
p

k x x x x c p c= +  

( )

2

2

'

2, ' ,   

x x

k x x e  

−
−

= 

Popular kernels
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Other Kernels

( ) ( ), ' tanh ' ,    , ;Tk x x ax x c a c= + 

( ), ' '.Tk x x x x=

❖  Sigmoid kernel: 

❖  Linear Kernel:

❖  Exponential/Laplacian Kernels: 

( ) ( )
2

' '

2, ' ,   , ' ,  .

x x x x

k x x e k x x e  

− −
− −

= = 

See supplement posted on moodle for more examples of kernels.

Popular kernels
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Popular KernelsKernels: properties

( )

The kernel function is a real-valued function with two arguments:

, ' :k x x X X →

( ) ( )

It is symmetric:

, ' ',k x x k x x=

( )

In some cases, it is non-negative:

, ' 0.k x x 

When  is non-negative and symmetric, then there is a Hilbert space of 

function on  for which  is a reproducing kernel. This is known as a . kernel

k

MercerX k

RBF, exponential and Laplacian kernels

and even order Polynomial kernels
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Popular KernelsKernels: properties

Consider inhomogeneous polynomial kernel with 2.p =

Sending data into feature space can increase the dimension of data features.

( ) ( )
2

2 ' '

1 1 2 2If ,  we have , ' 1x k x x x x x x = + +

( ) ( )
2 2

' ' ' ' ' '

1 1 2 2 1 1 2 2 1 1 2 21 2 2 2x x x x x x x x x x x x= + + + + +

( ) ( ) ( ) , ' '
T

k x x x x =

( ) 2 2

1 2 1 2 1 21, 2 , 2 , , , 2
T

x x x x x x x  =
  ( ) 6x 
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RBF, exponential and Laplacian kernels

Kernels: Solution Exercise IKernels: properties

( ) ( )
2

' ' '

2Exp: , ' ,   Laplacian: , '  or ,  .

x x x x x x

k x x e k x x e e   

− − −
− − −

= = ( )

2

2

'

2RBF , ' ,   

x x

k x x e  

−
−

= 
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Are the RBF, exponential and Laplacian kernels metrics?

Kernels: Solution Exercise I

( ) ( ) ( )1 2 2 3 1 3Condition 3 (triangle inequality): , , ,m x x m x x m x x+ 

( ) ( )1 2 2 1Condition 2 (symmetry): , ,m x x m x x=

( )Condition 1: , ' 0 if and only if '.k x x x x= =

Kernels: properties

( ) ( )
2

' '

2, ' ,   , ' ,  .

x x x x

k x x e k x x e  

− −
− −

= = ( )

2

2

'

2, ' ,   

x x

k x x e  

−
−

= 

Not satisfied, but if we write m(x,x)=1- k(x,x), we get a metric.
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( )

( )

2

2

1

'

2

1

Using the RBF kernel: , ' ,   ,  draw the 

of the kernel for one datapoint .   Find all , .

is l

s.t  

o ines 

, .

x x

k x x

x k x x t

e

x cs

 

−
−

=

= 

Kernels: Exercise 1.1
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RBF Kernel; M=1, i.e. 1 data point

Kernels: Solutions Exercise 1.1
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Kernels: Exercise 1.2

( )

( ) ( )

( ) ( )

2

2

'

2

1 2

1 2

1 2

Using the RBF kernel: , ' ,   ,  draw the 

of the kernel for two datapoints, , :  

a) Find all , s.t. , , .  

b) Find all , s.t. , , .

c) Discuss the effec

isolines 

x x

k x x e

x x

x k x x k x x cst

x k x x k x x cst

 

−
−

= 

+ =

− =

t of  on the isolines.
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Gaussian Kernel; M=2, i.e. 2 data points

Solution when taking the 

sum of kernels

-3 -2 -1 0 1 2 3
-5

-4

-3

-2

-1

0

1

2

3

4

5
Isolines for rbf kernel

x

y

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Solution when taking the 

difference of kernels

Kernels: Solutions Exercise 1.2
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Gaussian Kernel; M=2, i.e. 2 data points

Small kernel width Large kernel width

Solution when taking the sum of kernels

Kernels: Solutions Exercise 1.2
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Kernels: Exercise 1.3

( )

( ) ( )

2

2

2

'

2

' '

2

isolines 

 t

.

hree data

Using the RBF kernel: , ' ,   ,  draw the 

of the kernel for

Compare k

p

e

oi

r

nts

RBF to Exponential & Laplacian nels:

, ' ,   , ' ,  

x x

x x x x

k x x e

k x x e k x x e



 





−
−

− −
− −

= 

= = 
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Gaussian Kernel; M=3, i.e. 3 data points

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

5 Isolines for rbf kernel

x

y

Solution when taking the 

sum of kernels

Solution when taking the sum for 

the two points below and the 

difference with the 3rd point.

Kernels: Solutions Exercise 1.3
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Gaussian Kernel; M=3, i.e. 3 data points

Effect of increasing the kernel width

Kernels: Solutions Exercise 1.3
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Gaussian Kernel; M=3, i.e. 3 data points

Effect of increasing the kernel width

Kernels: Solutions Exercise 1.3
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( )

Using the homogeneous polynomial kernel: 

, ' , ' ,    ,

draw the isolines as in previous exercise  for:

a) one datapoint

b) two datapoints

Discuss the effect of  on the isolines.

p
k x x x x p

p

= 

Kernels: Exercise 2.1
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Kernels: Solutions Exercise 2.1

The set of points x, solutions of the equation:

is an infinite set of lines perpendicular to the vector x’.

Given a datapoint x’, the polynomial kernel is given by:

This is the equation of a projection onto the vector x’.

( ), ' = ' cos
p

x x x x 

( ), ' = ' cos .
p

x x x x cst =
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Polynomial Kernel; order p=1, 2, 3; M=1, i.e. 1 data points

p=1                                                      p=2                                              p=3

The isolines are lines perpendicular to the vector point from the origin. The order 

p does not change the geometry. It only changes the values of the isolines.

Kernels: Solutions Exercise 2.1

1x
1x 1x

2x
2x 2x

'x
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p=2

Kernels: Solutions Exercise 2.1

p=3
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Kernels: Solutions Exercise 2.1

( ) ( )

1 2

1 2 1 2

Given two vector datapoints  and , we have:

For 1,  , + , =
p p T T

x x

p x x x x x x x x= +

If the datapoints are 2-dimensional, we have:

( )( ) ( )( )

1 2

2 2
2 2

1 2 1 2

Given two vector datapoints  and , we have:

For 2,  , + , =
T T

x x

p x x x x x x x x= +

We expand and we get:

( ) ( )1 2=
T

x x x+
Projections orthogonal 

to composition of the two 

vector points

Equation of an ellipse
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Kernels: Solutions Exercise 2.1

If the datapoints are 2-dimensional, we have:

( )( ) ( )( )

1 2

2 2
2 2

1 2 1 2

Given two vector datapoints  and , we have:

For 2,  , + , =
T T

x x

p x x x x x x x x= −

We expand and we get:

( ) ( )

1 2

1 2 1 2

Given two vector datapoints  and , we have:

For 1,  , , =
p p T T

x x

p x x x x x x x x= − − ( ) ( )1 2=
T

x x x−

Projections orthogonal 

to composition of the two 

vector points

Equation of a hyperbola
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Kernels: Solution Exercise II
Homogeneous Polynomial Kernel; order p=1, 2, 3; M=2, i.e. 2 data points

p=1                                                                p=2 (sum)                                                p=2 (difference)

The isolines are lines perpendicular to the combination of the vector points for 

p=1.  With p=2 and the sum of kernels, we have an ellipse.  For the difference,  

we have a hyperbola. The ellipse and hyperbolas are centered at the origin. 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Isolines for Polynomial kernel

x

y

-20

-10

0

10

20

30

40

50

60
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Kernels: Solution Exercise II
Homogeneous Polynomial Kernel; order p=1, 2, 3; M=2, i.e. 2 data points

p=3 (sum)                                                                p=3 (diff)                                          

With higher orders for p, the solutions are equivalent to a superposition of

polynomial kernels of different orders, i.e. superposition of ellipses and

hyperbolas. They remain symmetrical around the origin, but may lead to more

curvy shapes as illustrated above.
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Kernels: Solution Exercise II
Homogeneous Polynomial Kernel; order p=1, 2, 3; M=2, i.e. 2 data points

p=4 (sum)                                                                p=4 (diff)                                          

With higher orders for p, the solutions are equivalent to a superposition of

polynomial kernels of different orders, i.e. superposition of ellipses and

hyperbolas. They remain symmetrical around the origin, but may lead to more

curvy shapes as illustrated above.
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( ) ( )

Does the effect changes if you use the inhomogeneous 

polynomial kernel?

, ' , ' ,    , ,
p

k x x x x c p c= + 

Kernels: Exercise 2.2

( ) ( ) ( )
1

1

With 1 point: , ' ' '
P

P P kp T P k T

k

x x c x x c c x x
−

−

=

+ = + + 

Same solution as for

homogeneous kernel

with a scaling by c

Same solution as for

homogeneous kernel
Offset of value of isoline zero 

toward positive or negative quadran 

depending on value of  and .c p
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( ) ( )

Does the effect changes if you use the inhomogeneous 

polynomial kernel?

, ' , ' ,    , ,
p

k x x x x c p c= + 

Kernels: Exercise 2.2

( ) ( ) ( ) ( )( )
1

1 2 1 2

1

With 2 points 
P

P P P k P k
T T P k T T

k

x x x x c c x x x x
−

− −

=

+ + + +

Same solution as for

homogeneous kernel

with a scaling by c

Same solution as for

homogeneous kernel

Offset of value of isoline zero 

toward positive or negative quadran 

depending on value of  and .c p
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Kernels: Solution Exercise II

Polynomial Kernel; order p= 2; c=1, M=3, i.e. 3 data points

The offset in the inhomogeneous polynomial kernels allows to shift the center 

of the ellipses and hyperbolas for p=2 and above. For p=1, it affects only the 

value of the isolines. 
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Kernels can also be created through addition of kernels

and through multiplications.

a) Draw  the isolines (around ')that result from adding a 

RBF and polynomial kernel, i.e. :

( , ') ( , ') ( ,RBF Poly

x

k x x k x x k x= + ')

b) Draw the isolines that result from multiplying a RBF and

polynomial kernel, i.e. :

( , ') ( , ') ( , ')RBF Poly

x

k x x k x x k x x= 

Kernels: Exercise 3
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RBF kernel =0.2 (left) / 0.8 (right) and Polynomial Kernel, p=1, c=-1, M=2.

( , ') ( , ') ( , )10 'RBF Polyk x x k x x k x x= +
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Isolines for Polynomial kernel

x

y

-6

-4

-2

0

2

4

6

8

Kernels: Solutions Exercise 3
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Kernels: Solution Exercise III

( , ') ( , ') ( , ')RBF Polyk x x k x x k x x= 
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Isolines for Polynomial kernel
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2 Original kernels

Result of the multiplication:

Kernels: Solutions Exercise 3
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Kernels: Solution Exercise III
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( , ') ( , ') ( , ')RBF Polyk x x k x x k x x= 

2 Original kernels

Result of the multiplication:

Kernels: Solutions Exercise 3
Isolines for Polynomial Kernel Isolines for RBF Kernel           

Isolines for Product of Kernels           
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Kernels: Solution Exercise III

1 2 3 4( , ) ( , ) ( , ) ( , )RBF Poly RBF Polyk x x k x x k x x k x x + 

4 datapoints

Kernel – composition of 4 datapoints

Kernels: Solutions Exercise 3

Composition of kernels can allow to create a variety of deformation of the space
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Kernels: Solution Exercise III

4 datapoints

Kernels: Solutions Exercise 3

Composition of RBF and ellipses / hyperbolas from Polynomials
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( )

( )

Two other relatively popular kernels are 

the  k

.

linear

cosin

ernel: , ' '.

'
the  kern ,e el: '

'

T

T

k x x x x

x x
k x x

x x

=

=

( )

Draw the isolines when using cosine kernel

'
, ' .

'

Which group of points cannot be separated by these kernels?

Tx x
k x x

x x
=

Kernels: Exercise 2.3
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Kernels: Solutions Exercise 2.3

( ) ( )( )
'

The  kernel: , ' cos , 'i
'

cos ne
Tx x

k x x x x
x x

= =
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This linear kernel is the special case of polynomial of order 1.

It cannot separate points that can be reached by a single line.

It can separate all other cases.

The cosine kernel cannot separate points that are colinear (vector

pointing from the origin to the point) and in the same quadran. 

It can hence not separate groups of points homogeneously distributed

in the same quadrans. 

This is due to the fact that the cosine kernel is insensitive to the distance 

to the origin unlike the linear kernel.

This can however be a strength as we will see with kernel K-means.

These concepts will be reused in kernel K-means lecture

Kernels: Solutions Exercise 2.3
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Bags of words: 

[machine, learning, kernel, rbf, robot, vision, dimension, blue, speed,...]

You want to group webpages with common groups of words.
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Set  with each entry in  set to 1 if the word is present else zero.

E.g. 1 1 1 0 0 0....  contains the words machine learning 
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Features live in low-dimensional space (common group of webpages have

a low number of combination of words):
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f webpages that share the same 

set of three keywords as .x

Example of application of the linear kernel



MACHINE LEARNING – 2012

55

MACHINE LEARNINGMACHINE LEARNING II

Sequence of strings (e.g genetic code): 

[IPTS VBUV,...]

Want to group strings with common subgroups of str

LQD

ings.

( ) 1000Set ,  the number of times sub-string  appears 

in the string word.

x x x 

One can apply the linear kernel with same encoding as 

in previous bags of words examples.

Using cosine kernel can allow to delineate webpages that 

share the same keywords irrespective of their frequency.

Example of application of the linear kernel
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▪ Kernels are real-valued, symmetric functions. 

▪ Kernels represent the inner product across projection of data in feature space.

▪ The most popular is the RBF kernel. It enables to group datapoints. The 

tightness of the grouping depends on the value of the hyperparameter .

▪ The polynomial and cosine kernels provide a geometric division of the space 

that embeds symmetry across the origin or an offset.
 

▪ Kernels in ML are useful because they allow to reduce computation of complex 

non-linear problem to simpler forms applied to linear problems.

▪ Determining the right kernel is difficult in practice. One usually determines the 

best choice through crossvalidation to determine the kernel and the best 

hyperparameters. 

▪ There exist methods to learn the kernel (see course on Gaussian Process and 

papers to read in class).

Kernels: Summary
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